skip to main content


Search for: All records

Creators/Authors contains: "González, Andrés D."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Having reliable interdependent infrastructure networks is vital for well‐being of a safe and productive society. Systems are vulnerable to failure or performance loss due to their interdependence among various networks, as each failure can propagate through the whole system. Although the conventional view has concentrated on optimizing the restoration of critical interdependent infrastructure networks using a centralized approach, having a lone actor as a decision‐maker in the system is substantially different from the actual restoration decision environment, wherein infrastructure utilities make their own decisions about how to restore their network service. In a decentralized environment, the definition of whole system optimality does not apply as each decision‐maker's interest may not converge with the others. Subsequently, this results in each decision‐maker developing its own reward functions. Therefore, in this study, we address the concern of having multiple decision‐makers with various payoff functions in interdependent networks by proposing a decentralized game theory algorithm for finding Nash equilibria solutions for network restoration in postdisaster situations.

     
    more » « less
  2. Abstract

    Managing risk in infrastructure systems implies dealing with interdependent physical networks and their relationships with the natural and societal contexts. Computational tools are often used to support operational decisions aimed at improving resilience, whereas economics‐related tools tend to be used to address broader societal and policy issues in infrastructure management. We propose an optimization‐based framework for infrastructure resilience analysis that incorporates organizational and socioeconomic aspects into operational problems, allowing to understand relationships between decisions at the policy level (e.g., regulation) and the technical level (e.g., optimal infrastructure restoration). We focus on three issues that arise when integrating such levels. First, optimal restoration strategies driven by financial and operational factors evolve differently compared to those driven by socioeconomic and humanitarian factors. Second, regulatory aspects have a significant impact on recovery dynamics (e.g., effective recovery is most challenging in societies with weak institutions and regulation, where individual interests may compromise societal well‐being). And third, the decision space (i.e., available actions) in postdisaster phases is strongly determined by predisaster decisions (e.g., resource allocation). The proposed optimization framework addresses these issues by using: (1) parametric analyses to test the influence of operational and socioeconomic factors on optimization outcomes, (2) regulatory constraints to model and assess the cost and benefit (for a variety of actors) of enforcing specific policy‐related conditions for the recovery process, and (3) sensitivity analyses to capture the effect of predisaster decisions on recovery. We illustrate our methodology with an example regarding the recovery of interdependent water, power, and gas networks in Shelby County, TN (USA), with exposure to natural hazards.

     
    more » « less